Adaptive Variance Function Estimation in Heteroscedastic Nonparametric Regression

نویسنده

  • Lie Wang
چکیده

We consider a wavelet thresholding approach to adaptive variance function estimation in heteroscedastic nonparametric regression. A data-driven estimator is constructed by applying wavelet thresholding to the squared first-order differences of the observations. We show that the variance function estimator is nearly optimally adaptive to the smoothness of both the mean and variance functions. The estimator is shown to achieve the optimal adaptive rate of convergence under the pointwise squared error simultaneously over a range of smoothness classes. The estimator is also adaptively within a logarithmic factor of the minimax risk under the global mean integrated squared error over a collection of spatially inhomogeneous function classes. Numerical implementation and simulation results are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Polynomial Variance Function Estimation

The conditional variance function in a heteroscedastic, nonparametric regression model is estimated by linear smoothing of squared residuals. Attention is focussed on local polynomial smoothers. Both the mean and variance functions are assumed to be smooth, but neither is assumed to be in a parametric family. The eeect of preliminary estimation of the mean is studied, and a \degrees of freedom"...

متن کامل

A Least Squares Method for Variance Estimation in Heteroscedastic Nonparametric Regression

Interest in variance estimation in nonparametric regression has grown greatly in the past several decades. Among the existing methods, the least squares estimator in Tong and Wang (2005) is shown to have nice statistical properties and is also easy to implement. Nevertheless, their method only applies to regression models with homoscedastic errors. In this paper, we propose two least squares es...

متن کامل

Optimal Difference-based Variance Estimation in Heteroscedastic Nonparametric Regression

Estimating the residual variance is an important question in nonparametric regression. Among the existing estimators, the optimal difference-based variance estimation proposed in Hall, Kay, and Titterington (1990) is widely used in practice. Their method is restricted to the situation when the errors are independent and identically distributed. In this paper, we propose the optimal difference-b...

متن کامل

Asymptotically efficient estimators for nonparametric heteroscedastic regression models

This paper concerns the estimation of a function at a point in nonparametric heteroscedastic regression models with Gaussian noise or noise having unknown distribution. In those cases an asymptotically efficient kernel estimator is constructed for the minimax absolute error risk.

متن کامل

Estimating the error distribution in nonparametric multiple regression with applications to model testing

In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007